
O:\PROMO\BUSINESS\DESIGN BOOK\000-DR-Design-Book - v7.doc

created : 12/12/2011 12:32:00 PM

printed : 12/12/2011 2:57:00 PM

Software:

Designing for Profitability
Required Design Concepts for IMPROVING BUSINESS PERFORMANCE

 page i

Application Software: Designing for Profitability

Table of contents

Table of Contents

1 PROFITABILITY AND SOFTWARE ... 1

1.1 SHIFT THE PERSPECTIVE FROM TECHNICAL TO STRATEGIC .. 1
1.2 PLAN FOR FUTURE DEMANDS .. 2

2 STRATEGIC PERSPECTIVE .. 3

2.1 APPLICATION CONCEPTS ... 3
2.2 LIMITATIONS OF THE FUNCTIONAL PERSPECTIVE ... 6
2.3 SOFTWARE CAPABILITIES FROM A STRATEGIC PERSPECTIVE .. 7

2.3.1 Customer Stratification ... 7
2.3.2 Product Extensibility .. 9

3 THE STRATEGIC PERSPECTIVE AND DESIGN ..10

3.1 TIER DESIGN MODEL ...10
3.2 INTEGRATING THE N-TIER MODEL WITH THE STRATEGIC PERSPECTIVE ..11

4 DESIGN FROM THE STRATEGIC PERSPECTIVE ..12

4.1 WHEN DESIGN FAILS TO SUPPORT STRATEGY ...12
4.2 RECOGNIZING THE NEED FOR CHANGE ..13
4.3 LEVERAGING PERFORMANCE CAPABILITIES ..13

5 DATA PRESENTATION LAYER ...14

5.1 USER INTERFACE ...14
5.2 INTERACTION DESIGN ..14

5.2.1 Mechanical vs. Computer Interfaces ..14
5.2.2 Addressing User Needs ..15
5.2.3 The Benefit ..15

5.3 REPORTING ..16
5.4 PRESENTATION ORDERING ...17

6 BUSINESS LOGIC LAYER ...18

6.1 AUTOMATING A MANUAL PROCESS ..18
6.2 IMPROVING AN AUTOMATED PROCESS ...18
6.3 TRANSACTIONS ..19
6.4 WORKFLOW ...20

7 DATA ACCESS LAYER...21

7.1 DESIGN PATTERNS ...21
7.2 SEARCH CAPABILITY ...23
7.3 DATABASE INTEGRATION ..24

8 MANAGING FOR PROFITABILITY – CASE STUDIES ..26

8.1 CASE STUDY 1: BIG EASTERN TELECOM ..27
8.2 CASE STUDY 2 – MANAGING CUSTOMERS FOR PROFIT ..28

 page 1

Application Software: Designing for Profitability

1 Profitability and Software
Profitability depends on generating revenue in the most effective operational

fashion, whether you are manufacturing widgets, or carrying out complex

discovery in a legal case.

Our most fundamental principle is that sound software design can help your

company make money and improve profitability.

This is a complex subject that most software designers avoid tackling head on,

preferring to promote (business-IT alignment).

We feel our framework can provide much of what is missing in the theory and

practice of making software systems work well from a business perspective.

Too often, software deliverables “meet the spec” in the strictest definition of the

term, but they yet do not fully support business needs. Sometimes software

systems have designs flaws that render them only marginally effective, and

occasionally impossible to use.

1.1 Shift the perspective from technical to strategic

The first area where we provide critical contribution is in shifting the focus from

technical construction to a business and strategy driven focus. Pursuing this

objective, we identify specific logical capabilities that can augment and extend the

core software functions and make sure these software assets support more than

just the narrow elements of a business function specification.

Systems do things that the business logic requires.

 Tracking physical material

 Understanding the status of customer accounts

 Providing new features for a healthcare product

That can help your business thrive. However, in times of increased stress in the

economy, business activities require commensurate increases in power and

flexibility of information systems they depend on.

In a contracting, recessionary economy, cost management and cost reduction take

on priority importance. Most companies have to do much more than just

implement a 5% or 10% staff reduction. Often fundamental improvements are

required – just when there are NO budgetary resources to support such initiatives.

 page 2

Application Software: Designing for Profitability

To reduce costs, businesses must make better use of computers – replacing

administrative labor and overhead with faster, more accurate, and more

responsive computer systems. However, that change places stress on the design of

most software systems – they just are not that adaptable. We can show you how to

make better business processes using better software designs.

Overhaul the way your business processes and information systems integrate.

Design strategies that take advantage of technology are completely different from

designs based on manual methods, and they will continue to change along with

technological advances.

Replacing labor with automated functions is not always easy. Human cognitive

processing performs very well in environments where inputs are varied or where

paper forms prevail and present (often) poorly formatted information. Computer

systems require more structure than the customer service periods allow.

Even just supporting labor (to gain in accuracy, timeliness, etc) is not easy.

However, although the initial setup can be resource-intensive, automation will

save money over time.

1.2 Plan for future demands

Another key area where we provide critical contribution is in guiding you as you

plan for future demands. Extra time spent during the planning stage minimizes

surprises down the road. Furthermore, it can reduce costs as well. Spending extra

person-hours on getting the design right "from the start" is infinitely preferable to

wasting development time on a design that incorporated flaws from the beginning.

Why do so many designs fail to implement the desired strategy? Is it because of

poor communication – stretching, perhaps, across numerous organizational levels

and stakeholders? Can it be that, despite decades of technological advancement,

business systems still cannot achieve everything that corporate leadership

envisions?

These may be factors, and yet in practice, the most obvious reason that crops up

repeatedly is the sudden emergence of the unexpected. Sometimes this is due to

poor planning – more often it is simply force of events.

 page 3

Application Software: Designing for Profitability

2 Strategic Perspective
Senior executives and operating managers just do not have the frameworks in

place that can help them control the technology tiger and apply software

resources.

Almost all published application architectures and design principles relate to

specific code (the technical perspective), rather than to business issues and

functionality (the strategic perspective). Software design and strategic design are

two different things. Sometimes they are in harmony, but often, unfortunately,

they conflict.

Most books and papers on application design deal with technical design (Service

Oriented Architecture, HTTP Handlers, ASP.NET request processing pipeline,

and so on). While these are fascinating topics in their own right, they have little

to do with the actual business concepts that lead to lower costs or increased

revenue.

2.1 Application Concepts

For the most part, we can treat products and services on an equivalent level of

abstraction. Of course, the service framework lacks Material Requirements

Planning, Bill of Materials, and Master Production Schedule. Still, services can

depend in large part on a product structure, particularly in insurance applications

like health care insurance, property and casualty insurance, and life insurance.

The concept of product is central to delivering services to customers.

Application software must have better facilities for defining, designing, and

managing the key elements of the business environment. Further, to support

profit-making initiatives, software systems should support certain business-level

characteristics, for example:

 Product Definition

 Accounts

 Transactions

 Customer Characterizations

 page 4

Application Software: Designing for Profitability

Product Definitions

Although product definition is important in most businesses, the following

financial products require particular attention:

 Life Insurance

 Annuities

 401(k) Plans

 CDs

A recent presentation by Intentional Software underscores the magnitude and the

expense of design problems in this context.

Accounts

Application software must allow the user to:

 Define accounts

 Establish account properties

 Relate a large set of properties to a single record (owner)

Transactions

Application software must allow the user to:

 Perform calculations to arrive at tax amounts, discounts, etc.

 Track real world events

 Make the database conform to observed data

 page 5

Application Software: Designing for Profitability

Customer Characteristics

In the basic-concept framework that includes customer, product, service, contract

and pricing, we can also include other conceptual elements such as distribution

channels, outsourcing, regulators, etc.

In this concept framework, we assume that customers fall naturally into types.

We do the same for products and services, selling sets of products and services

preferentially to specific customer types. Pricing establishes the financial

outcomes. Servicing determines the cost stream of maintaining a customer in the

portfolio over time. For example, for loan origination capabilities, this also

includes the option of securitization: packaging up a collection of customers and

"selling them off" to other servicing organizations.

Products

Productscustomer

type Ccustomer

type Bcustomer

type A

Products

Products

pricing

contract
terms

&

conditions

contract
terms

&

conditions

contract
terms

&

conditions

contract
terms

&

conditions

Contracts define the terms of the economic exchange between customers and the

company, and encapsulate the relationships, expectations, and obligations that

Customers and the company have. Activity-based management provides the tools

you need to determine which customers and products yield an acceptable

contribution to the profitability of the company.

This is all very well – but it is merely a starting point. To enable the rapid,

reliable process engineering that most firms desire, the tools and methodologies

must “flesh out” this skeletal framework.

 page 6

Application Software: Designing for Profitability

2.2 Limitations of the Functional Perspective

Most development processes rely on Subject Matter Experts (SMEs) to provide

the structure and details of functional requirements. The traditional approach

generally follows these steps:

1. Business analysts and designers interview Sees and capture these

functional requirements in charts, diagrams, and special languages like

Unified Modeling Language (UML).

2. In conjunction with the Subject Matter Experts (SMEs), analysts and

designers validate the contents “logically”, resolving ambiguities and

incomplete requirements through an issue resolution process.

3. Finally, the designers devise a design specification that programmers

implement.

If all goes well, the resultant software conforms to the stated business needs and

complies with a technical architecture that provides requisite performance.

The process based on the functional perspective is inefficient. First, it takes quite

a while to traverse the sequence of events from initial requirement to delivered,

tested code. However, let us leave aside for the moment the long “waterfall” time

delays from the initial interviews with SMEs to the final production (or in the case

of a more iterative process, the several time-consuming cycles required to achieve

convergence among the developers).

Secondarily and possibly even more basic and important is the inability of the

SME to incorporate vital design features that protect the application from the

usual pattern of short-shelf-life.

In short, SMEs have little understanding of good software design, and

programmers have little understanding of business requirements. Design, in

practice, is a compromise between these two opposing forces, which sadly, are

often lack of synchronization.

 page 7

Application Software: Designing for Profitability

Furthermore, creating a design invariably demands coordination between different

departments. In this example, the design for a new HR application affects HR

itself (the users of the system), the engineers who build the system and the

Operations team who are responsible for ongoing support.

2.3 Software Capabilities from a Strategic Perspective

When designing software from a strategic perspective, your application suite

should have the capabilities discussed in this section. This list is not

comprehensive, but it does indicate the general range of capabilities that you

should be able to implement.

2.3.1 Customer Stratification

“All customers are created unequal.” Each customer is a unique enterprise. Few

systems, however, are able to capture, manage and apply the numerous

distinguishing characteristics. To compromise, managers must identify customers

using a much smaller set of characteristics, and then adapt the business

capabilities to those parameters. This is what we call “customer stratification”.

 Identify a set of customer based on sales history, volume, past products,

etc.

 Identify customers with a high number of calls to customer service.

 Apply a specific business function to a class of customers.

From the Supply Chain Systems Laboratory at Texas A&M University, separating

customers according to observed business impact. Then, one needs to design

applications that capture the characteristics that lead to profit outcomes.

 page 8

Application Software: Designing for Profitability

 page 9

Application Software: Designing for Profitability

2.3.2 Product Extensibility

Customers demand increasing “perceived value” (convenience, transparency, and

so on). They want the ability to monitor their accounts from web browsers, and

they demand a wider range of product options instead of one-size-fits all, or

“Bronze, Silver, Gold” limited approach.

To provide this increased perceived value, the product suite should accommodate

the following features:

 Add/retract options and features without programming interventions

 Service legacy customers without great cost inconvenience.

 Bundle a specific set of product features into a package with an incentive

to the customer to buy without further customization.

 page 10

Application Software: Designing for Profitability

3 The Strategic Perspective and Design
In this section, we review the traditional design principles associated with the

functional perspective. We then discuss how the strategic perspective can build

on and integrate with these traditional design principles.

3.1 Tier Design Model

Designers have long adopted a basic and simplistic three-tier model to describe

the organization of business applications. These tiers, or layers, are:

 Data Presentation Layer

 Business Logic Layer

 Data Access Layer

Each of these layers has a well-defined purpose:

 DATA PRESENTATION normally refers to the user interface (the forms that

users interact with in their ongoing work). Although the standard

principles for good user interface design are well known, designers do not

always follow them.

 BUSINESS LOGIC represents the code that provides computational and

operational services that the business needs to do its work: e.g. for a bank,

handling deposits and withdrawals, for a retailer making inventory

adjustments, calculating sales tax, etc.

 DATA ACCESS is the layer that stores and retrieves information in one or

more databases. These technical details need careful attention, because

they can cause problems if not properly implemented (slow processing

time, etc.) but from a strategic standpoint, they are almost independent of

business design. Or rather, they have their own design principles that

focus on performance optimization and should not cause strategic

problems.

Many applications in operation today conform to this basic layer model. As more

applications began to take advantage of networks, this layer approach morphed

into an n-tier model, in which n implies an number of distinct tiers (2-tier, 4-tier,

etc.) used in the architecture

N-tier application architecture provides a model for developers to create a flexible

and reusable application. By breaking up an application into tiers, developers

http://www.webopedia.com/quick_ref/application.html
http://www.webopedia.com/quick_ref/architecture.html
http://www.webopedia.com/quick_ref/app.arch.asp

 page 11

Application Software: Designing for Profitability

need only modify or add a specific layer, avoiding the need to rewrite the entire

application, if they decide to change technologies or scale up.

3.2 Integrating the N-Tier Model with the Strategic Perspective

The basic n-tier model is useful technically, and in later chapters, we will offer

some analysis of how to optimize it. However, this model does little to provide

business executives and managers with the capabilities and functionality they

need – both for short-haul operational excellence and for long-term strategic

advantage.

By designing software from a strategic perspective, and considering application

design principles that may not be apparent in the n-tier approach, you can

accomplish both goals.

Stated simply, we adopt a two-part structure:

 Business Design

 Systems Design

BUSINESS DESIGN defines business capability in a competitive context. Moreover,

it encompasses aspects of what and how the business carries out its activities. In

simple terms, business design is a solution to a strategic imperative. Strategy

drives design and determines:

 What the business does.

 How the business does it (including, for example, workflow)

SYSTEMS DESIGN covers similar aspects of the structure and function of

information systems. It also defines policies that should set usability, ergonomics

of those information systems. Within systems design we find solutions for

application capabilities, as well as the technical policies that govern the “look-

and-feel” of the code that implements the applications.

 page 12

Application Software: Designing for Profitability

4 Design from the Strategic Perspective
In an ideal world, strategy drives the design of information systems. In practice,

unfortunately, it often seems as if the actual functionality of the system bears little

resemblance to the desired strategy.

The most important reason technology often falls short of fulfilling business

needs is the existence of a “built-in” disconnect between business-level and

technical-level environments with regard to concepts, languages, time frames and

sometimes radically divergent operational modes. Often what seems intuitively

straightforward, reasonable, and doable at a business level is remarkably difficult

or even impossible to achieve in a smooth and orderly way on the technical level.

This gap between perceived feasibility at the business level and the granite-rock

lack of feasibility (or even controllability) at the technical level is a major element

that all software platforms must address.

4.1 When Design Fails to Support Strategy

The problems caused by inadequate software design are familiar to everyone:

applications are difficult to change, break often, and in many cases do not perform

as desired. If deficiencies do not exist right now, then they will exist very soon in

the future because environmental changes always outpace the ability of the

software to adapt to change.

Traditional design techniques fail to take into account the requirements of today's

business needs. Organizations often construct the designs for use with outdated

technology as well. For example, engineers base traditional software design on

use cases – but use cases can only describe "known" situations. What happens

when the playing field changes?

Theoretically, designers develop information systems to meet business needs.

Nevertheless, it often happens that software imperfections constrain business

processes – as incredible as it sounds. Technological weaknesses should not

compromise strategy. We can reverse that trend.

The following are danger signs that may reveal flawed design:

 "That's the way we've always done it"

 "That button is supposed to do X but it's never really worked"

 "I know it doesn't make sense but you have to do it that way"

 "This part of the process is still done manually"

 page 13

Application Software: Designing for Profitability

4.2 Recognizing the Need for Change

Software is inherently inflexible; once you have completed an application, it is

often as difficult to change as if it were carved in stone. Only human intelligence,

based on experience, can recognize when change is necessary. When outdated

systems are standing in the way of progress, it is up to enterprise leaders to set a

new direction and do the required work.

4.3 Leveraging Performance Capabilities

In difficult times, it is important to keep in mind the company's strengths as well

as its weaknesses. These strengths invariably come down to one thing: good

people. Information systems exist – or should exist – to make it easier for people

to do their jobs and to facilitate efficiency. Good people come up with good

ideas, and the role of technology is to implement those ideas.

In our experience, there are always opportunities for improvement – usually in the

form of greater efficiency, technological advancements, or improved metrics.

 page 14

Application Software: Designing for Profitability

5 Data Presentation Layer
In this section, we present the strategic perspective on three data presentation

components:

 User Interface

 Interaction Design

 Reporting

5.1 User Interface

The user interface encompasses everything that goes on at the workstation at the

screen level, among other tasks, the following two major functions:

 Validation

 Lookup

I’m assuming there is more to say here at some point

5.2 Interaction Design

Interaction design governs the way people interact with machines. It is a critical

part of the strategic perspective -- good interaction design supports the business

function by providing tools that employees can use efficiently and simply. As

computers replace increasing numbers of tasks that people used to perform

manually or with mechanical machines, the need for good user interaction design

becomes ever more important. It is an essential part ensuring that designs meet

the business needs any software applications.

5.2.1 Mechanical vs. Computer Interfaces

Consider the difference between the way we interact with mechanical machines

and the way we use today’s computers. Interaction with machines takes place

physically and directly. In contrast, interaction with computers relies on a level of

abstraction that takes place in the user interface. For example, in most homes, you

control the room temperature by changing the setting on a mechanical thermostat

dial. When you perform the same function using a temperature-control computer

console, you must interact with the abstraction of the user interface menu, which

may or may not mimic the original dial.

 page 15

Application Software: Designing for Profitability

This evolution is taking place in the products we and in the services we consume.

Contrast the experience of listening to your car radio (manually changing dials

and volume settings) vs. listening to music through your cable TV menu system,

which requires that you interact with the abstraction of the user interface menu.

To interact with the user interface, you must learn a set of steps to follow and

understand the function of various options on the menu. The inputs and results

are less obvious, making mastery of the task more complex than the original

mechanical or manual system.

5.2.2 Addressing User Needs

To address this added complexity, designers must create user interfaces that are

obvious and clear. It is no longer sufficient to focus exclusively on the product’s

function. Applications must also adhere to the principles of interaction design,

emphasizing the quality of interaction between people and computers to improve

the user experience.

The principles of interaction design arise from the application of cognitive

psychology (including the ideas of mental models, interface metaphors and

affordances) to the techniques of traditional design. This unique project-based

approach to development applies several methods for describing and testing the

usability of interface interaction, through iterative usability testing and evaluation.

5.2.3 The Benefit

Designs that emphasize the quality of the user experience embody the principles

of the strategic perspective at the most visible level of the design – the user

interface. Applications that incorporate good interaction design connect users,

products, services, and functions in ways that meet the business need, while at the

same time respecting user needs and providing a positive experience to the people

who interact with the applications on a daily basis.

http://en.wikipedia.org/wiki/Cognitive_psychology
http://en.wikipedia.org/wiki/Cognitive_psychology

 page 16

Application Software: Designing for Profitability

5.3 Reporting

We need something here that ties the strategic perspective to reporting, or perhaps

just saying how it differs from traditional approach.

Simply put, reporting describes the outputs that the application provides. Much of

the value of computer support comes from the user’s options for viewing, sorting,

or printing data. Reporting provides the mechanism for applying an application

system’s data resources to a given business environment.

In most organizations, paper reports continue to be highly useful and critical to

business functions. Moving completely to paperless operations is not feasible.

Organizations often find that they can reduce paper utilization, but not eliminate

it.

Data in concrete form has very useful properties – you can move it around

without elaborate electronic capabilities. Users can physically file it and organize

it. They can scribble notes on the paper and refer back to them later. Of course,

you could build similar facilities in software, but in terms of immediate

applicability, you cannot beat paper.

However, the software can do things that are cost-prohibitive or essentially

impossible with paper/manual systems, such as the following tasks:

 User selection of data to display

 Show data in any table

 Show data according to relationships

A report writer is an essential requirement of the software design that should

support selection, grouping, and extraction functions. In addition, it must allow

you to extract data subsets into tables that you can save.

 page 17

Application Software: Designing for Profitability

5.4 Presentation Ordering

Users of an information system can rarely forecast which sort orders are important

for viewing information. Keeping in mind the principles of strategic design, it is

important to build in flexibility that can accommodate these changing

requirements.

For example, managers may what to see data in count order to determine which

customer has the greatest number (or the least number) of counts.

fname lname counts

John Zeeman 2

Louise Martin 5

Mary Smith 11

Jerry Lee 15

However, the next day however, managers might need to see customers ordered

by last name in order to determine which match customers to salespeople.

fname lname counts

Jerry Lee 15

Louise Martin 5

Mary Smith 11

John Zeeman 2

 page 18

Application Software: Designing for Profitability

6 Business Logic Layer
The business logic layer encompasses the business rules that determine what

transactions the system handles and how that processing takes place. This layer

of the architecture defines the following application characteristics:

 Portability

 Rules of behavior

 Workflow

It is in this area where most design problems arise, because this is where you

implement your strategy. The business logic layer is also the starting point when

converting business processes from manual to automated systems. Typically,

designers create the business logic first, then the data access layer, and finally the

data presentation layer. Because of its key role in the application design and its

role in implementing strategy, it is in the business logic layer that the strategic

perspective is most critical.

6.1 Automating a manual process

Business logic for automated processes often differs slightly from manual logic.

In most cases, software makes the process easier, but badly designed software can

create difficulties, and in some cases, it can introduce "bugs" into a process that

worked well before automation.

In a pre-automated context, most companies have a good understanding of the

manual process they seek to automate. Translating the process into software

terms, however, takes time and planning. Often, designers are bogged down in

working out the steps for individual tasks while they lose sight of the bigger

picture.

Limited assumptions can cause many design flaws. For example, assumptions

such as "This data will only need to be viewed one way" or "We don't need to

collect that information.” can cause problems. The resulting design is inflexible.

6.2 Improving an automated process

The process of modifying an existing software application is slightly different

from automating a manual process from the beginning. Users can clearly see the

steps involved in a manual process. In contrast, software code obscures the steps

 page 19

Application Software: Designing for Profitability

involved in an automated process. Sometimes the resulting software is more

inflexible than the manual process it automates.

6.3 Transactions

Software systems generally contain some sort of persistent collection of data, for

example, in an order entry system, the database would maintain information about

orders placed and the customers who placed them. The application’s business

logic must allow you to intereact with the database to enter transactions. In an

order entry system, these transactions would include be a purchases or returns of

an items.

Although different transaction types can occur on the same day, transactions are

almost invariably “point-in-time” events. If these transactions represent money,

they may represent debits or credits In these cases, the application must allow

you to develop both sums and other calculated results from the transaction.

From a system that tracks property values, you might want to be able to calcuate the

following:

 Days, dollars, visits, counts

 Property ranges

 Quantitative vs. discrete property value

From a system that tracks work done for clients, you might want to be able to calculate

various sums based on the following:

 Product

 Customer

 Customer type

 Work item

 Department

 page 20

Application Software: Designing for Profitability

6.4 WorkFlow

There are many competent workflow management systems available. It makes

sense to use them when there are complex work flow decisions, multiple rules,

and a large number of participants. Economics (system life cycle costs versus

investment) will determine when it makes most sense to use these vendor-

supplied products.

Almost every application has some form of workflow however, and it doesn’t

always make sense to utilize available commercial products (either because of the

magnitude of the investment, or ongoing support costs). It still is important

though to have the basic workflow separate from the application program logic.

 page 21

Application Software: Designing for Profitability

7 Data Access Layer
The Data Access Layer provides access to data stored in a repository of some

kind, such as a relational database. It provides access to other program modules

that can manipulate the data without the need to deal with the underlying

complexity of the storage device.

7.1 Design Patterns

Application systems models often have design elements that occur repeatedly,

even in vastly dissimilar applications. Understanding these design patterns can

lead to speedier, more effective development processes. By capitalizing on

previous designs and relationships, it is possible to create working applications

with much less effort than starting from scratch every time.

You can find the following design elements throughout many applications:

 Parent-child

 Parent selection based on child characteristics

 Tree

 Synchronized datasets across several forms

 Validation

 Lookup

Consider the parent-child design pattern in an order entry application. In this

example, every order is an instance of the parent, each of which can have one or

more children (associated line items).

http://en.wikipedia.org/wiki/Access
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/w/index.php?title=Entity-relational_database&action=edit&redlink=1

 page 22

Application Software: Designing for Profitability

Some designs are extremely useful, and can help guide workflow in an almost

effortless way. For example, in the parent-child structure, it is very useful to have

functional capabilities that allow you to isolate certain parents with children

exhibiting particular characteristics.

In such an application, you might want to find all of the orders with associated

“back order” line items or select out line items that reference a particular part that

may have a problem.

e.g.

 page 23

Application Software: Designing for Profitability

7.2 Search Capability

Searching the database to isolate files and records of special interest is one of the

most important operations for the vast majority of business applications

Unfortunately, most of these searches are “hardwired”. They apply only to a

small number of cases and only a few specific data fields. When the needs of the

business change, requiring a different set of fields, it could take quite some time

to implement the required changes.

A design that is independent of the fields (including the number of fields) can

provide lightening quick responsiveness when search criteria must change.

 page 24

Application Software: Designing for Profitability

7.3 Database Integration

Modern businesses rely on multiple applications, and those application systems

may or may not have straightforward mechanisms for integrating their operation.

Integrating these separate applications requires design methods that can span

multiple databases, and multiple requirements. These techniques are not simple,

but well worth the effort to produce a data environment where independent

applications begin to work together.

For example, the systems must be able to manage one-time occurrences and

continuing trends. To accomplish these goals, application software must be able

to manage timeframes including discrete dates, intervals, and ranges, as shown in

the following diagram.

 page 25

Application Software: Designing for Profitability

Therefore, the software must allow you to perform the following type of date

selections:

 before a date

 after a date

 between a date

 last week

 last month

 last year

 page 26

Application Software: Designing for Profitability

8 Managing for Profitability – Case

Studies
As we have discussed throughout this document, profitability results from good

design guided by the principles of the strategic perspective. In other words,

designers must emphasize the overall business need (profitability) while

addressing the functional requirements of each system (payroll, inventory, client

management, etc.).

“Managing for profitability” means identifying and controlling performance

shortfalls that reduce sales revenue or drive up costs. Just as you must automate

manual processes as the number of transactions, clients, employees, etc. grows,

you must also automate the process of recognizing and managing unfavorable

events and conditions that impinge on profitability as the complexity of your

organization grows.

You can capitalize on opportunities to manage for profitability by incorporating

techniques for handling revenue impairment, both on the cost side and the

revenue side, into every design. The strategic goal of profitability must take its

place among the functional design goals as you create and maintain systems. It

becomes part of the functional specification for all applications throughout the

organization.

In this section, we provide practical real-world examples of how companies can

manage for profitability.

 page 27

Application Software: Designing for Profitability

8.1 Case Study 1: Big Eastern Telecom

Big Eastern Telecom is a regional telecommunications and internet services

provider in the metropolitan New York area. Management had determined that

labor costs were out of line with revenue and expected industry-performance

levels. They hired us to determine where and how they could trim back these

costs.

The Challenge

Big Eastern Telecom was experiencing the following problems:

 difficulty completing customer orders in a timely fashion

 a high incidence of rework (what does that mean?)

They asked Management Strategies to examine basic fulfillment processes and

measure how well they were meeting their goals. Armed with this analysis, we

were then able to make adjustments to improve quality and performance.

The Process

Much of the required information resided in our client’s TBS (what does this

stand for?) sales order system. It also resided in the technical systems that

recorded, tracked, and implemented changes to their network infrastructure and

installed equipment.

Because of the complexity of the organization, it was difficult to derive the

performance metrics required to uncover system problems. More importantly, the

complex fulfillment process comprised many interdependent steps. Thus, a delay

in one process step (say, in network engineering, or network turn up) could have

cascading and non-linearly increasing effects on downstream steps.

To get the information we needed, we harvested data from automated systems and

augmented that information with actual “stop-watch” observations. An analyst

monitored every order-processing step for a specific order end-to-end through the

fulfillment process, recording and tracking what happened to it along the way.

We further spent time to “sample” continuous stretches of activity throughout

every part of the process, generating enough information to form statistically valid

data, This data allowed us to draw conclusions about exactly where, how, and

why the process consumed resources.

The results, shown in the following figure pointed the way toward remarkable

improvements.

 page 28

Application Software: Designing for Profitability

We uncovered far more rework related activity (what constitutes a rework?) than

met the eye in a first cursory examination. The analysis of the automated system

provided the information we needed to make very specific recommendations for

reallocating workers and talent and allowing Big Eastern Telecom to meet its

profitability goals.

The Solution

By implementing our recommendations to incorporate simple guards against just

one of their problem areas (rework), Big Eastern Telecom realized productivity

gains of 17%, all of which flowed directly to the bottom line. By applying the

principles of the strategic perspective to the functional design, we were able to

address the business need of improved profitability through design changes.

8.2 Case Study 2 – Managing Customers for Profit

In “Managing Customers for Profit”, V. Kumar studies the effect of retaining

unprofitable customers on a firm.
 1

 This section explores how the results of such

a study can provide management with the information it needs to make decisions

1
 V. Kumar, Managing Customers for Profit: Strategies to Increase Profits and Build

Loyalty(Wharton School Publishing, 2008).

 page 29

Application Software: Designing for Profitability

about customer management, which designers can then integrate into the

functional design to achieve business goals.

The Challenge

A general merchandise catalog retailer wanted to determine the effect of retaining

unprofitable customers on the firm. For these purposes, a customer is considered

unprofitable when the when the customer’s consumption of company resources

exceeds its contribution to revenue.

The Process

To study the effect of retaining unprofitable customers, researchers segmented

customers into two groups based on their level of loyalty and profitability. As

you can clearly see in Figure 2.5, both segments of customers start out to be

profitable, and they generate comparable profits until month 20. After that,

customer 1 maintains its current profitability level, whereas customer 2 becomes

less and less profitable.

By employing a forward-looking metric, the company can assess the behavior of

its customers future profitability. The company may base its metrics on the

assumption that customers will continue their past purchasing behavior and that

employees will continue to allocate an equal amount of resources to both

customers. Armed with this information, the company can decide when a

customer is no longer worth pursuing.

The Solution

By adding the business logic that evaluates customer profitability to the functional

design, management has the information it needs to make decisions about

customer management. For example, one response might be the classical activity-

based cost-management approach that advocates firing customers who are

absorbing more resources than others are without producing corresponding

revenue.

 page 30

Application Software: Designing for Profitability

However, with metrics in place to evaluate customer profitability, management

now has the opportunity to consider the complexity of customer management and

devise ways to use customer information to meet other business needs. For

example, management may want to take into account the following customer-

specific issues that might affect decisions pertaining to customer retention:

 Customers have different quality requirements, and different tolerances for

errors and issues.

 One customer may complain about receiving marginal results (because

they are incorporating your deliverable in what they are selling to their

own meticulous customers).

 Still, another customer may take the same deliverable and be perfectly

happy with what you have given them.

If you simply let customers go when they tie up too much engineering, sales, and

maintenance resources, you may miss valuable feedback that you need to improve

your business functions. In fact, you may want to pay special attention to those

more costly customers because some of them may be identifying particular

weakness in your delivery process.

If you fire unprofitable customers too quickly, you may never address fundamental

problems in your profitability because you eliminate the inputs that drive the error

processes. The analysis that discovers profitable and unprofitable customers provides

the basis for the application of the company’s customer-management strategy.

